А. И. Агафонов, Т. Ю. Бростилова, Н. Б. Джазовский

СОВРЕМЕННАЯ РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ

Учебное пособие

3-е издание, переработанное и дополненное

Москва Вологда «Инфра-Инженерия», 2025

СОДЕРЖАНИЕ

ПРЕДИСЛОВИЕ	3
введение	4
1. ОБЩИЕ ПОНЯТИЯ О РЕЛЕЙНОЙ ЗАЩИТЕ И АВТОМАТИКЕ	
1.1. НАЗНАЧЕНИЕ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ	5
1.2. ВИДЫ ПОВРЕЖДЕНИЙ В ЭЛЕКТРОУСТАНОВКАХ И ОСНОВНЫЕ ПРИЧИНЫ ИХ ПОЯВЛЕНИЯ	7
1.3. КРАТКАЯ ХАРАКТЕРИСТИКА ВЛИЯНИЯ КОРОТКИХ ЗАМЫКАНИЙ НА РАБОТУ ГЕНЕРАТОРОВ, ТРАНСФОРМАТОРОВ И ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧ	8
1.4. НЕНОРМАЛЬНЫЕ РЕЖИМЫ В ЭЛЕКТРОУСТАНОВКАХ	11
1.5. ОСНОВНЫЕ ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К РЕЛЕЙНОЙ ЗАЩИТЕ И АВТОМАТИКЕ	13
Вопросы для самопроверки	16
2. ЭЛЕМЕНТНАЯ БАЗА СОВРЕМЕННОЙ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИ	KM
2.1. ОБЩИЕ ПРИНЦИПЫ ВЫПОЛНЕНИЯ РЕЛЕ	17
2.2. ЭЛЕКТРОМЕХАНИЧЕСКИЕ РЕЛЕ	
2.3. СОВРЕМЕННЫЕ МИКРОПРОЦЕССОРНЫЕ УСТРОЙСТВА	23
2.4. ОСОБЕННОСТИ ЭКСПЛУАТАЦИИ МИКРОПРОЦЕССОРНЫХ ЗАЩИТ И АВТОМАТИКИ	47
Вопросы для самоконтроля	63
3. ОСНОВНЫЕ ПРИНЦИПЫ ПОСТРОЕНИЯ ЗАЩИТНЫХ УСТРОЙСТВ	
3.1. ОСОБЕННОСТИ ПОСТРОЕНИЯ ЗАЩИТНЫХ УСТРОЙСТВ И ИХ СОСТАВНЫЕ ЧАСТИ	64
3.2. ПРИНЦИПЫ ОБЕСПЕЧЕНИЯ СЕЛЕКТИВНОСТИ	65
3.3. ТОКОВЫЕ ЗАЩИТЫ И ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ ТОКОВЫХ ЗАЩИТ	66
3.4. СХЕМЫ СОЕДИНЕНИЯ ТРАНСФОРМАТОРОВ ТОКА И РЕЛЕ ТОКА	67

3.5. СПОСОБЫ ВКЛЮЧЕНИЯ РЕЛЕ И ВОЗДЕЙСТВИЯ ЗАЩИТЫ НА ВЫКЛЮЧАТЕЛЬ НАГРУЗКИ73
Вопросы для самопроверки
4. ИСТОЧНИКИ ОПЕРАТИВНОГО ТОКА
4.1. НАЗНАЧЕНИЕ И ОБЩИЕ ТРЕБОВАНИЯ
4.2. ХАРАКТЕРИСТИКА И СХЕМЫ ПИТАНИЯ ОПЕРАТИВНЫХ ЦЕПЕЙ ИСТОЧНИКОВ ПОСТОЯННОГО ОПЕРАТИВНОГО ТОКА78
4.3. ВИДЫ И ПАРАМЕТРЫ ИСТОЧНИКОВ ПЕРЕМЕННОГО ОПЕРАТИВНОГО ТОКА
4.4. ПИТАНИЕ ЦЕПЕЙ УПРАВЛЕНИЯ ВЫКЛЮЧАТЕЛЯМИ 82
Вопросы для самопроверки
5. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА
5.1. ПРИНЦИП ДЕЙСТВИЯ ТОКОВЫХ ЗАЩИТ91
5.2. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА ЛЭП
5.3. СХЕМЫ МАКСИМАЛЬНОЙ ТОКОВОЙ ЗАЩИТЫ НА ПОСТОЯННОМ ОПЕРАТИВНОМ ТОКЕ95
5.4. ВЫБОР ТОКА СРАБАТЫВАНИЯ ЗАЩИТ
5.5. ВЫБОР СТУПЕНИ И ВРЕМЕНИ ДЕЙСТВИЯ ЗАЩИТЫ ВЫДЕРЖКИ 105
5.6. МАКСИМАЛЬНАЯ ТОКОВАЯ ЗАЩИТА С ПУСКОМ (БЛОКИРОВКОЙ) ОТ РЕЛЕ МИНИМАЛЬНОГО НАПРЯЖЕНИЯ 108
5.7. МАКСИМАЛЬНЫЕ ТОКОВЫЕ ЗАЩИТЫ НА ПЕРЕМЕННОМ ТОКЕ 112
5.8. МАКСИМАЛЬНЫЕ ТОКОВЫЕ ЗАЩИТЫ С РЕЛЕ ПРЯМОГО ДЕЙСТВИЯ
5.9. ОБЩАЯ ОЦЕНКА И ОБЛАСТЬ ПРИМЕНЕНИЯ МАКСИМАЛЬНОЙ ТОКОВОЙ ЗАЩИТЫ
Вопросы для самопроверки
6. ТОКОВЫЕ ОТСЕЧКИ
6.1. ПРИНЦИП ДЕЙСТВИЯ ОТСЕЧЕК
6.2. ОСНОВНЫЕ СХЕМЫ ОТСЕЧЕК
6.3. ПАРАМЕТРЫ ТОКОВЫХ ОТСЕЧЕК МГНОВЕННОГО ДЕЙСТВИЯ 137
6.4. НЕСЕЛЕКТИВНЫЕ ОТСЕЧКИ И ОБЛАСТИ ИХ ПРИМЕНЕНИЯ 140

6.5. ТОКОВЫЕ ОТСЕЧКИ НА ЛИНИЯХ С ДВУСТОРОННИМ ПИТАНИЕМ	141
6.6. ТОКОВЫЕ ОТСЕЧКИ С ВЫДЕРЖКОЙ ВРЕМЕНИ	143
Вопросы для самопроверки	145
7. МАКСИМАЛЬНАЯ ТОКОВАЯ НАПРАВЛЕННАЯ ЗАЩИТА	
7.1. ПРИНЦИП ДЕЙСТВИЯ И ПАРАМЕТРЫ ЗАЩИТЫ	146
7.2. ТРЕБОВАНИЯ К ОРГАНАМ НАПРАВЛЕНИЯ МОЩНОСТИ, ИХ УСТРОЙСТВО И СХЕМЫ ВКЛЮЧЕНИЯ	
7.3. СХЕМЫ ВЫПОЛНЕНИЯ ОРГАНОВ НАПРАВЛЕНИЯ МОЩНОСТИ И ИХ РАЗНОВИДНОСТИ	163
7.4. ОЦЕНКА И ОБЛАСТЬ ПРИМЕНЕНИЯ ТОКОВЫХ НАПРАВЛЕННЫХ ЗАЩИТ	166
Вопросы для самопроверки	167
8. ПРОДОЛЬНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ЗАЩИТЫ	
8.1. ОБЩИЕ СВЕДЕНИЯ	168
8.2. ПРИНЦИП ДЕЙСТВИЯ ПРОДОЛЬНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ЗАЩИТ	169
8.3. ОЦЕНКА ПРОДОЛЬНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ	
Вопросы для самопроверки	175
9. ПОПЕРЕЧНЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ ЗАЩИТЫ	
9.1. ПРИНЦИП ДЕЙСТВИЯ И ВИДЫ ПОПЕРЕЧНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ЗАЩИТ ПАРАЛЛЕЛЬНЫХ ЛИНИЙ	176
9.2. ТОКОВАЯ ПОПЕРЕЧНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА	177
9.3. НАПРАВЛЕННАЯ ПОПЕРЕЧНАЯ ДИФФЕРЕНЦИАЛЬНАЯ ЗАЩИТА	182
9.4. ВЫБОР УСТАВОК НАПРАВЛЕННОЙ ПОПЕРЕЧНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ЗАЩИТЫ, ВКЛЮЧЕННОЙ НА ФАЗНЫЕ ТОК	И 191
9.5. ВЫБОР УСТАВОК ПОПЕРЕЧНОЙ ДИФФЕРЕНЦИАЛЬНОЙ ТОКОВОЙ НАПРАВЛЕННОЙ ЗАЩИТЫ НУЛЕВОЙ ПОСЛЕДОВАТЕЛЬНОСТИ	196
9.6. ОЦЕНКА НАПРАВЛЕННЫХ ПОПЕРЕЧНЫХ ДИФФЕРЕНЦИАЛЬНЫХ ЗАЩИТ	196
Вопросы для самопроверки	197

10. ДИСТАНЦИОННАЯ ЗАЩИТА

10.1. НАЗНАЧЕНИЕ И ПРИНЦИП ДЕЙСТВИЯ ДИСТАНЦИОННОЙ ЗАЩИТЫ	198
10.2. ХАРАКТЕРИСТИКИ ВЫДЕРЖКИ ВРЕМЕНИ ДИСТАНЦИОННЫХ ЗАЩИТ	201
10.3. ПРИНЦИПЫ ВЫПОЛНЕНИЯ СЕЛЕКТИВНОЙ ЗАЩИТЫ СЕТИ С ПОМОЩЬЮ СТУПЕНЧАТОЙ ДИСТАНЦИОННОЙ ЗАЩИТЫ	201
10.4. СТРУКТУРНАЯ СХЕМА ДИСТАНЦИОННОЙ ЗАЩИТЫ СО СТУПЕНЧАТОЙ ХАРАКТЕРИСТИКОЙ	203
10.5. СХЕМЫ ВКЛЮЧЕНИЯ ДИСТАНЦИОННЫХ И ПУСКОВЫХ ИЗМЕРИТЕЛЬНЫХ ОРГАНОВ НА НАПРЯЖЕНИЕ И ТОК СЕТИ	207
10.6. ХАРАКТЕРИСТИКИ СРАБАТЫВАНИЯ РЕЛЕ СОПРОТИВЛЕНИЯ И ИХ ИЗОБРАЖЕНИЕ НА КОМПЛЕКСНОЙ ПЛОСКОСТИ	215
10.7. ОЦЕНКА ДИСТАНЦИОННОЙ ЗАЩИТЫ	221
Вопросы для самопроверки	222
11. АВТОМАТИКА ЭЛЕКТРОЭНЕРГЕТИЧЕСКИХ СИСТЕМ	
11.1. АВТОМАТИЧЕСКОЕ ПОВТОРНОЕ ВКЛЮЧЕНИЕ	223
11.2. АВТОМАТИЧЕСКОЕ ВКЛЮЧЕНИЕ РЕЗЕРВНОГО ПИТАНИЯ И ОБОРУДОВАНИЯ	222
11.3. АВТОМАТИЧЕСКАЯ ЧАСТОТНАЯ РАЗГРУЗКА	
Вопросы для самопроверки	
12. МИКРОПРОЦЕССОРНАЯ ИНТЕГРИРОВАННАЯ РЕЛЕЙНАЯ ЗАЩИТА И АВТОМАТИКА БАЗОВЫХ УСТАНОВОК ЭПЕКТРОЗНЕРГЕТИЧЕСКИХ СИСТЕ	
abiuma i nra dajuddia yg i anuduk jhek i rujheri e i nyegrha unu i e	
12.1. ОСОБЕННОСТИ ПРИМЕНЕНИЯ МИКРОПРОЦЕССОРНОЙ ИНТЕГРИРОВАННОЙ РЕЛЕЙНОЙ ЗАЩИТЫ И АВТОМАТИКИ	250
12.2. МИКРОПРОЦЕССОРНАЯ ИНТЕГРИРОВАННАЯ РЕЛЕЙНАЯ ЗАЩИТА ГЕНЕРАТОРОВ И БЛОКА ГЕНЕРАТОР-ТРАНСФОРМАТОР	251
12.3. ИНТЕГРИРОВАННАЯ РЕЛЕЙНАЯ ЗАЩИТА И ПРОТИВОАВАРИЙНАЯ АВТОМАТИКА ЛИНИЙ ЭЛЕКТРОПЕРЕДАЧИ	256
12.4. ОСОБЕННОСТИ ЗАЩИТЫ ТРАНСФОРМАТОРОВ, ВКЛЮЧАЯ МИКРОПРОЦЕССОРНУЮ ЗАЩИТУ	261
Вопросы для самопроверки	
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	290