А. А. Кудинов, А. Ю. Губарев, С. К. Зиганшина

ВРАЩАЮЩИЕСЯ РЕГЕНЕРАТИВНЫЕ ВОЗДУХОПОДОГРЕВАТЕЛИ ЭНЕРГЕТИЧЕСКИХ КОТЛОАГРЕГАТОВ

Старый Оскол ТНТ 2021

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ 7
ГЛАВА 1. МЕТОДЫ ИНТЕНСИФИКАЦИИ
ТЕПЛООБМЕНА
ГЛАВА 2. КОТЕЛЬНЫЕ УСТАНОВКИ ТЕПЛОВЫХ
ЭЛЕКТРОСТАНЦИЙ. ОБЩИЕ СВЕДЕНИЯ15
2.1. Классификация котельных агрегатов15
2.2. Технологическая схема котельной установки
с барабанным паровым котлом18
2.3. Водогрейные котлы20
2.4. Паровые котлы производственных предприятий24
2.5. Энергетические котельные агрегаты30
2.5.1. Паровой котел с естественной циркуляцией
котловой воды31
2.5.2. Паровой котел с многократной принудительной
циркуляцией котловой воды35
2.5.3. Прямоточный паровой котел37
2.6. Котельная установка, оборудованная топкой
с кипящим слоем39
2.7. Котлы-утилизаторы технологических установок42
2.8. Котлы-утилизаторы газотурбинных установок44
2.9. Основные элементы котельного агрегата51
2.10. Отвод уходящих газов котельных установок61
2.11. Тягодутьевые устройства котельных установок64
глава 3. вращающиеся регенеративные
воздухоподогреватели котельных установок
ТЕПЛОВЫХ ЭЛЕКТРОСТАНЦИЙ. СОСТОЯНИЕ ПРОБЛЕМЫ 68
3.1. Конструктивные особенности существующих моделей
вращающихся регенеративных воздухоподогревателей68
3.2. Конструкции теплообменных поверхностей
вращающихся регенеративных воздухонагревателей79

ГЛАВА 4. ИССЛЕДОВАНИЕ РЕЖИМОВ РАБОТЫ
ВРАЩАЮЩИХСЯ РЕГЕНЕРАТИВНЫХ
воздухоподогревателей и разработка
МЕТОДИК РАСЧЕТОВ96
4.1. Экспериментальное обследование режимов работы
воздухоподогревателей Самарской ТЭЦ. Цели и задачи
обследования96
4.2. Описание натурной установки97
4.3. Результаты экспериментального обследования
регенеративных воздухоподогревателей Самарской ТЭЦ99
ГЛАВА 5. РАЗРАБОТКА МЕТОДИК ТЕПЛОВЫХ
РАСЧЕТОВ ВРАЩАЮЩИХСЯ РЕГЕНЕРАТИВНЫХ
воздухоподогревателей цилиндрической
ФОРМЫ
5.1. Методика конструктивного теплового расчета
вращающегося регенеративного воздухоподогревателя
традиционной цилиндрической формы100
5.2. Методика поверочного теплового расчета
вращающегося регенеративного воздухоподогревателя
цилиндрической формы112
ГЛАВА 6. СОЗДАНИЕ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ
И РАЗРАБОТКА ПРОГРАММ ТЕПЛОВОГО
и аэродинамического расчетов регенеративных
воздухоподогревателей цилиндрической
ФОРМЫ
6.1. Математическая модель и программа
конструктивного теплового расчета вращающегося
регенеративного воздухоподогревателя115
6.2. Математическая модель и программа поверочного
теплового расчета вращающегося регенеративного
воздухоподогревателя122
6.3. Вариантные расчеты режимов работы РВП-54
Самарской ТЭЦ127
ГЛАВА 7. ВРАЩАЮЩИЙСЯ РЕГЕНЕРАТИВНЫЙ
воздухоподогреватель в форме
УСЕЧЕННОГО КОНУСА

	7.1. Описание конструкции вращающегося
	регенеративного воздухоподогревателя в форме
	усеченного конуса130
	7.2. Методика теплового и аэродинамического расчета
	вращающегося регенеративного воздухоподогревателя
	в форме усеченного конуса137
	7.3. Математическая модель и программа теплового
	и аэродинамического расчета вращающегося
	регенеративного воздухоподогревателя
	в форме усеченного конуса145
	7.4. Исследование процессов теплообмена
	и определение оптимальных геометрических параметров
	вращающегося регенеративного воздухоподогревателя
	в форме прямого усеченного конуса149
	7.5. Технико-экономическое обоснование конструкции
	вращающегося регенеративного воздухоподогревателя
	в форме прямого усеченного конуса156
Γ.	ЛАВА 8. КОНСТРУКЦИЯ ДВУХПОТОЧНОГО
	вухходового вращающегося
	ЕГЕНЕРАТИВНОГО ВОЗДУХОПОДОГРЕВАТЕЛЯ162
	8.1. Устройство двухноточного двухходового
	вращающегося регенеративного воздухоподогревателя 162
	8.2. Методика теплового и аэродинамического расчета
	двухпоточного двухходового вращающегося
	регенеративного воздухоподогревателя164
	8.3. Математическая модель и программа теплового
	и аэродинамического расчета двухпоточного
	двухходового вращающегося регенеративного
	воздухоподогревателя 170
	8.4. Исследование процессов теплообмена и определение
	оптимальных геометрических параметров двухпоточного
	двухходового вращающегося регенеративного
	воздухоподогревателя172
	8.5. Технико-экономическое обоснование конструкции
	двухпоточного двухходового вращающегося
	регенеративного воздухоподогревателя177

ГЛАВА 9. РАЗРАБОТКА ЭФФЕКТИВНЫХ	
ТЕПЛООБМЕННЫХ ПОВЕРХНОСТЕЙ	
ВРАЩАЮЩИХСЯ РЕГЕНЕРАТИВНЫХ	
воздухоподогревателей	187
9.1. Моделирование процессов теплообмена	
в набивках вращающихся регенеративных	
воздухоподогревателей в программном	
комплексе ANSYS	187
9.1.1. Общие сведения о создании конечно-элементной	
модели	187
9.1.2. Анализ результатов моделирования	
9.2. Разработка перспективных конструкций теплообменных	ζ.
поверхностей набивок вращающихся регенеративных	
воздухоподогревателей	194
9.2.1. Общие сведения и конструктивные характеристики	
теплообменных поверхностей набивок	
вращающихся регенеративных воздухоподогревателей	194
9.2.2. Результаты моделирования. Вывод критериальных	
уравнений	196
9.2.3. Оценка эффективности применения новых	
теплообменных поверхностей набивок регенеративных	
воздухоподогревателей	205
ЗАКЛЮЧЕНИЕ	206
TABLE TO STANLING OF	010
приложения	Z10
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	306