

А.И. Клындюк Г.С. Петров Е.А. Чижова

ФИЗИЧЕСКАЯ ХИМИЯ

Утверждено Министерством образования Республики Беларусь в качестве учебника для студентов учреждений высшего образования по группе специальностей «Химическая инженерия и процессы, технологии в области охраны окружающей среды»

ОГЛАВЛЕНИЕ

ПРЕДИСЛОВИЕ
ПРИНЯТЫЕ СОКРАЩЕНИЯ И ОБОЗНАЧЕНИЯ ОСНОВНЫХ ВЕЛИЧИН
Глава 1. ОСНОВЫ ХИМИЧЕСКОЙ ТЕРМОДИНАМИКИ
1.1. Основные понятия химической термодинамики
1.2. Первое начало (закон) термодинамики. Внутренняя энергия, теплота, работа
1.3. Тепловые эффекты процессов, протекающих при постоянном объеме или постоянном давлении, связь между ними. Энтальпия
1.4. Закон Гесса, следствия из него
1.5. Теплоемкость веществ при постоянном объеме или давлении
1.6. Зависимость теплового эффекта химической реакции от температуры. Уравнение Кирхгоффа
1.7. Второе начало (закон) термодинамики. Энтропия
1.8. Третье начало (закон) термодинамики. Тепловая теорема Нернста. Постулат Планка. Абсолютная энтропия вещества, ее экспериментальное определение
1.9. Расчет изменения энтропии в результате протекания различных процессов и в результате химической реакции
1.10. Термодинамические потенциалы как критерии равновесия и возможности протекания процессов. Энергия Гиббса, энергия Гельмгольца
1.11. Характеристические функции. Уравнения Гиббса — Гельмгольца
1.12. Понятие о химическом потенциале. Уравнение Гиббса — Дюгема. Химический потенциал идеального и реального газа
Задачи
Вопросы и задания для контроля и самоконтроля

Слава 2. XИМИЧЕСКОЕ PABHOBECUE 62
2.1. Понятие о химическом равновесии. Константа равновесия химической реакции, способы ее выражения
2.2. Уравнение изотермы химической реакции. Критерии равновесия и возможности протекания химической реакции
2.3. Зависимость константы равновесия химической реакции от температуры. Уравнения изобары и изохоры Вант-Гоффа
2.4. Вычисление состава равновесной смеси, равновесной степени превращения исходных реагентов и равновесного выхода продуктов реакции 79
2.5. Влияние различных факторов на положение равновесия химической реакции. Принцип Ле Шателье — Брауна 82
Задачи
Вопросы и задания для контроля и самоконтроля
Глава 3. ФАЗОВЫЕ РАВНОВЕСИЯ
3.1. Фазовое равновесие. Основные понятия и определения
3.2. Условия равновесия в гетерогенных системах. Правило фаз Гиббса 101
3.3. Фазовые равновесия в однокомпонентных системах. Уравнение Клапейрона – Клаузиуса
3.4. Диаграммы состояния однокомпонентных систем
3.5. Растворы, их виды. Способы выражения состава растворов
3.6. Понятие о парциальных молярных величинах, их определение. Дифференциальные теплоты растворения и разбавления
3.7. Давление насыщенного пара над жидким раствором. Законы Рауля, Дальтона и Генри 121
3.8. Коллигативные свойства растворов
3.9. Диаграммы состояния двухкомпонентных систем типа «жидкость — пар». Правило рычага. Законы Коновалова
3.10. Физико-химические основы перегонки растворов. Простая перегонка. Фракционная перегонка. 146
3.11. Диаграммы состояния двухкомпонентных систем типа «жидкость — жидкость» 154
3.12. Диаграммы кипения двухкомпонентных систем с частичной растворимостью компонентов друг в друге в жидком состоянии
3.13. Экстракция. Закон распределения Нернста — Шилова
3.14. Диаграммы состояния двухкомпонентных систем типа «твердое тело — жидкость» (диаграммы плавкости) без образования химических соединений 165

4.17. Электропроводность неводных растворов электролитов. Правило Вальдена — Писаржевского	0
4.18. Электропроводность ионных расплавов и твердых электролитов 25.	2
Задачи	4
Вопросы и задания для контроля и самоконтроля	7
Глава 5. ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ, ИХ ЭЛЕКТРОДВИЖУЩАЯ СИЛА	0
5.1. Понятие об электроде и электродном потенциале	0
5.2. Правила записи электродов, электродных реакций и электродных потенциалов 26-	4
5.3. Стандартный водородный электрод. Принцип определения знака и величины электродного потенциала	7
5.4. Правила записи и описания гальванических элементов, их электродвижущая сила 26	8
5.5. Вывод уравнения Нернста для гальванического элемента и отдельного электрода	1
5.6. Классификация электродов 27.	5
5.7. Классификация гальванических элементов	2
5.8. Диффузионный потенциал, причины его возникновения и способы устранения 29	1
5.9. Термодинамика гальванического элемента	3
5.10. Компенсационный метод измерения ЭДС. Нормальный элемент Вестона	5
5.11. Потенциометрия	
5.12. Химические источники тока, их виды и характеристики	
Задачи	
Вопросы и задания для контроля и самоконтроля	
Глава 6. ОСНОВЫ ХИМИЧЕСКОЙ КИНЕТИКИ И КАТАЛИЗА	7
6.1. Основные понятия химической кинетики	7
6.2. Основной постулат химической кинетики	3
6.3. Применение основного постулата химической кинетики к необратимым реакциям	7
6.4. Методы определения порядка реакции 34	8
6.5. Влияние температуры на скорость и константу скорости химической	
реакции	
6.6. Кинетика сложных реакций	1
6.7. Приближенные методы химической кинетики	6

6.8. Теория активных столкновений. Теория активированного комплекса 368
6.9. Автокаталитические и сопряженные реакции
6.10. Цепные реакции
6.11. Фотохимические реакции
6.12. Особенности протекания реакций в растворах
6.13. Катализ, его виды. Принцип действия катализатора
6.14. Диффузия. Законы Фика
6.15. Гетерогенные реакции, их виды и особенности описания
Задачи
Вопросы и задания для контроля и самоконтроля
ПРИЛОЖЕНИЕ 1. Основные формулы и уравнения
<i>ПРИЛОЖЕНИЕ 2.</i> Связь между концентрациями жидких растворов, выраженными различными способами
<i>ПРИЛОЖЕНИЕ 3.</i> Связь между типом электролита, его моляльностью, ионной силой (I) и средним ионным стехиометрическим коэффициентом (v_{\pm})
ЛИТЕРАТУРА
ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ
ИМЕННОЙ УКАЗАТЕЛЬ 422