Научная библиотека

П. Ю. Бранцевич

ALH9 * 8 0 1 2 4 7 8 9 2 *

ЦИФРОВАЯ ОБРАБОТКА ВИБРАЦИОННЫХ СИГНАЛОВ

	Ī
НАВУКОВАЯ БІБЛІЯТЭКА	
Беларускага нацыянальнага	,
тэхнічнага універсітэта Інв. № 1886177—	178 (29kg)

МИНСК «БЕСТПРИНТ» 2022

ОГЛАВЛЕНИЕ

Определения и сокращения	
Глава 1. Методологические аспекты определения амплитудных и фазог	вых
параметров вибрации механизмов с вращательным движением	
1.1. Основные понятия	
1.2. Амплитудные и фазовые параметры вибрации	
1.3. Модель вибрационного процесса и алгоритма определения его	
параметров при нестационарном режиме работы турбоагрегата	41
1.4. Анализ погрешностей при вычислении фазовых параметров вибраций	
Глава 2. Обработка вибрационных сигналов с использованием	
спектрального анализа и цифровой фильтрации	58
2.1. Применение преобразования Фурье при обработке сигналов	58
2.2. Спектр вещественных сигналов и переход к комплексному представлен	нию
2.3. Алгоритм быстрого преобразования Фурье, программная реализация и	
оценка трудоемкости	67
2.4. Особенности спектрального анализа вибрационных сигналов, отражаю	щих
вибрационное состояние механизмов роторного типа	79
2.5. Алгоритм построения полосового спектра	85
2.6. Разделение вибрационного сигнала на компоненты	87
2.7. Определение амплитудно-фазовых параметров нестационарных	
вибрационных сигналов	90
2.8. Обработка вибрационных сигналов с изменяющейся основной	
частотой	.97
2.9. Локализация ударных воздействий по уровню шумоподобной	
•	102
2.10. Вычисление огибающей сигнала	
2.11. Модели вибрационных сигналов	
2.12. Цифровая фильтрация вибрационных сигналов	
2.13. Алгоритм цифровой фильтрации на основе дискретного преобразован	ия
Фурье	
2.14. Выделение квазипериодической составляющей с помощью нерекурси	вных
полосовых фильтров	
2.15. Кепстральный анализ вибрационных сигналов	
2.16. Удаление низкочастотного дрейфа вибрационного сигнала	138
Глава 3. Исследование свойств вибрационных сигналов	145
3.1. Применение вейвлетов для исследования вибросигналов	
3.2. Преобразование Гильберта-Хуанга при исследовании вибросигналов	
3.3. Построение траекторий движения подшипниковых опор турбоагрегата	
3.4. Усреднение вибрационного сигнала во временной области	

Глава 4. Анализ вибрационных сигналов, получаемых при динамических	
испытаниях зданий и сооружений	191
4.1. Решаемая проблема	191
4.2. Исследуемые сигналы	
4.3. Математическая модель для определения собственных частот	
конструкции	193
4.4. Несущая способность конструкции	
4.5. Алгоритм определения частоты собственных колебаний и амплиту	
соответствующих колебаний по амплитудному спектру	
4.6. Алгоритм определения логарифмического декремента затухания	
колебаний по временной реализации	199
4.7. Алгоритм определения параметров собственных колебаний по	
вибрационному сигналу	200
4.8. Алгоритм автоматического определения параметров собственных	колеба-
ний по вибрационному сигналу	204
4.9. Пример экспериментального исследования по определению собств	венных
частот конструкций	208
Глава 5. Пример методики анализа изменения вибрационного	
состояния технического объекта	213
Заключение	236
Литература	237
Придомания	245